Diurnal and estradiol-dependent changes in gonadotropin-releasing hormone neuron firing activity.
نویسندگان
چکیده
A robust gonadotropin-releasing hormone (GnRH) surge is a prerequisite signal for the luteinizing hormone (LH) surge that triggers ovulation. In rodents, the GnRH surge is initiated by elevated estradiol and a diurnal switch in estrogen action from negative to positive feedback. The ability of constant estradiol treatment to induce daily LH surges was tested in adult mice that were ovariectomized (OVX) or OVX and treated with estradiol implants (OVX+E). LH in OVX mice showed no time-of-day difference. In contrast, OVX+E mice showed a large LH surge (8- to 124-fold relative to the a.m.) in p.m. samples on d 2-5 post-OVX+E. Targeted extracellular recordings were used to examine changes in firing activity of GnRH neurons in brain slices. There was no time-of-day difference in cells from OVX mice. In contrast, OVX+E cells recorded in the p.m. showed an increased mean firing rate and instantaneous firing frequency, which could increase GnRH release, and decreased duration of quiescence between bouts of firing, possibly reflecting increased pulse frequency, compared with cells recorded in the a.m. In the a.m., OVX+E cells showed changes in GnRH neuron firing reflecting negative feedback compared with OVX cells, whereas in the p.m., OVX+E cells exhibited changes suggesting positive feedback. These data indicate that differences in pattern and level of individual GnRH neuron firing may reflect the switch in estradiol action and underlie GnRH surge generation. The persistence of altered GnRH neuron activity in slices indicates that this approach can be used to study the neurobiological mechanisms of surge generation.
منابع مشابه
Estradiol induces diurnal shifts in GABA transmission to gonadotropin-releasing hormone neurons to provide a neural signal for ovulation.
Ovulation is initiated by a surge of gonadotropin-releasing hormone (GnRH) secretion by the brain. GnRH is normally under negative feedback control by ovarian steroids. During sustained exposure to estradiol in the late follicular phase of the reproductive cycle, however, the feedback action of this steroid switches to positive, inducing the surge. Here, we used an established ovariectomized, e...
متن کاملClassical estrogen receptor alpha signaling mediates negative and positive feedback on gonadotropin-releasing hormone neuron firing.
During the female reproductive cycle, the neuroendocrine action of estradiol switches from negative feedback to positive feedback to initiate the preovulatory GnRH and subsequent LH surges. Estrogen receptor-alpha (ERalpha) is required for both estradiol negative and positive feedback regulation of LH. ERalpha may signal through estrogen response elements (EREs) in DNA and/or via ERE-independen...
متن کاملVoltage-gated potassium currents are targets of diurnal changes in estradiol feedback regulation and kisspeptin action on gonadotropin-releasing hormone neurons in mice.
Estradiol has both negative and positive feedback actions upon gonadotropin-releasing hormone (GnRH) release; the latter actions trigger the preovulatory GnRH surge. Although neurobiological mechanisms of the transitions between feedback modes are becoming better understood, the roles of voltage-gated potassium currents, major contributors to neuronal excitability, are unknown. Estradiol alters...
متن کاملEstradiol suppresses glutamatergic transmission to gonadotropin-releasing hormone neurons in a model of negative feedback in mice.
A surge of gonadotropin-releasing hormone (GnRH) release from the brain triggers the luteinizing hormone (LH) surge that causes ovulation. The GnRH surge is initiated by a switch in estradiol action from negative to positive feedback. Estradiol signals critical for the surge are likely transmitted to GnRH neurons at least in part via estradiol-sensitive afferents. Using an ovariectomized estrad...
متن کاملProstaglandin E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation.
Astrocytes in the hypothalamus release prostaglandin E(2) (PGE(2)) in response to cell-cell signaling initiated by neurons and glial cells. Upon release, PGE(2) stimulates the secretion of gonadotropin-releasing hormone (GnRH), the neuropeptide that controls reproduction, from hypothalamic neuroendocrine neurons. Whether this effect on GnRH secretion is accompanied by changes in the firing beha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 43 شماره
صفحات -
تاریخ انتشار 2005